
Automated Synthesis of Computational Circuits Using
Genetic Programming

John R. Koza
Computer Science Dept.

258 Gates Building
Stanford University

Stanford, California 94305-9020
koza@cs.stanford.edu

http://www-cs-
faculty.stanford.edu/~koza/

Forrest H Bennett III
Visiting Scholar

Computer Science Dept.
Stanford University

Stanford, California 94305
fhb3@slip.net

Jason Lohn
Visiting Scholar

Computer Science Dept.
Stanford University

Stanford, California 94305
jlohn7@leland.stanford.edu

Frank Dunlap
Dunlap Consulting

Palo Alto, California

Martin A. Keane
Martin Keane Inc.
5733 West Grover

Chicago, Illinois 60630
makeane@ix.netcom.com

David Andre
Computer Science Division

University of California
Berkeley, California

dandre@cs.berkeley.edu

Abstract: Analog electrical circuits that perform mathematical functions (e.g., cube root, square) are
called computational circuits. Computational circuits are of special practical importance when the small
number of required mathematical functions does not warrant converting an analog signal into a digital
signal, performing the mathematical function in the digital domain, and then converting the result back to
the analog domain. The design of computational circuits is difficult even for mundane mathematical
functions and often relies on the clever exploitation of some aspect of the underlying device physics of the
components. Moreover, implementation of each different mathematical function typically requires an
entirely different clever insight. This paper demonstrates that computational circuits can be designed
without such problem-specific insights using a single uniform approach involving genetic programming.
Both the circuit topology and the sizing of all circuit components are created by genetic programming.
This uniform approach to the automated synthesis of computational circuits is illustrated by evolving
circuits that perform the cube root function (for which no circuit was found in the published literature) as
well as for the square root, square, and cube functions.

1. Introduction
Analog electrical circuits that perform mathematical
functions (e.g., cube root, square) are called
computational circuits. Computational circuits are of
special practical importance when the small number of
required mathematical functions does not warrant
converting an analog signal into a digital signal,
performing the mathematical function in the digital
domain, and then converting the result back to the
analog domain. The design of computational circuits is
difficult even for mundane mathematical functions and
often relies on clever exploitation of some aspect of the
underlying physics of the components. Each function
usually requires a different clever insight (Gilbert 1968,
Sheingold 1976, Babanezhad and Temes 1986).

This paper demonstrates that computational circuits
can be designed by means of a single uniform approach
using genetic programming. Both the circuit topology
and the sizing of all circuit components are created by
genetic programming. This uniform approach to the
automated synthesis of computational circuits is
illustrated by evolving a circuit for the cube root, square
root, square, and cube functions.

The problem of circuit synthesis involves designing
an electrical circuit that satisfies user-specified design
goals. The design of analog circuits and mixed analog-
digital circuits has not proved to be amenable to
automation (Rutenbar 1993). Thompson (1996) used a
genetic algorithm to evolve a frequency discriminator on
a Xilinx 6216 reconfigurable gate array in analog mode.
CMOS operational amplifier (op amp) circuits have
been designed using a modified version of the genetic
algorithm (Kruiskamp and Leenaerts 1995); however,
the topology of each op amp was one of 24 pre-selected
topologies based on the conventional human-designed
op amp stages. Evolvable digital hardware (Higuchi et
al. 1993; Sanchez and Tomassini 1996) offers a
potential approach to automated synthesis of digital
circuits.

2 . Evolution of Circuits
Genetic programming is an extension of John Holland's
genetic algorithm (1975) in which the population
consists of computer programs of varying sizes and
shapes (Koza 1992, 1994a, 1994b; Koza and Rice
1992). Recent research on genetic programming is

Administrator
J.R. Koza, F.H. Bennett, J.D. Lohn, F. Dunlap, D. Andre, M.A. Keane, ``Automated Synthesis of Computational Circuits using Genetic Programming,'' 1997 IEEE International Conference on Evolutionary Computation, IEEE Press, Piscataway, NJ, 1997, pp. 447--452.

described in Kinnear (1994), Angeline and Kinnear
(1996), and Koza, Goldberg, Fogel, and Riolo (1996).

Genetic programming ordinarily evolves computer
programs that are represented as rooted, point-labeled
trees with ordered branches. Genetic programming can
be applied to circuits if a mapping is established
between the program trees found in genetic
programming and the line-labeled cyclic graphs germane
to circuits.

Developmental biology suggests a way to map
program trees into circuits. Using these principles,
Gruau (1996) evolved neural networks using genetic
programming. The starting point of the growth process
used herein is a very simple embryonic electrical circuit.
The embryonic circuit contains certain fixed parts
appropriate to the problem at hand and certain wires that
are capable of subsequent modification. An electrical
circuit is progressively developed by applying the
functions in a circuit-constructing program tree to the
modifiable wires of the embryonic circuit (and, at each
later step of the development, to both the modifiable
wires and the other components of the developing
circuit).

The functions in the circuit-constructing program
trees include (1) connection-modifying functions that
modify the topology of the circuit, (2) component-
creating functions that insert components into the
circuit, (3) arithmetic-performing functions that appear
in arithmetic-performing subtrees as argument(s) to the
component-creating functions and that specify the
numerical value of the component, and (4) calls to
automatically defined functions that appear in function-
defining branches.

Figure 1 Embryonic circuit. The developmental
process for converting a program tree into an electrical
circuit begins with an embryonic circuit. Figure 1
shows a one-input, one-output embryonic circuit. This
embryo contains a voltage source VSOURCE connected
to nodes 0 (ground) and 1 , a fixed source resistor
RSOURCE between nodes 1 and 2 , a modifiable wire
Z0 between nodes 2 and 3 , a fixed isolating wire
ZOUT between nodes 3 and 5, an output point (voltage
probe) VOUT at node 5 , and a fixed load resistor
RLOAD between nodes 5 and ground. Only the
modifiable wire Z0 is subject to modification during
the developmental process.

Each branch of the program tree is created in
accordance with a constrained syntactic structure.
Branches are composed from construction-continuing
subtrees that continue the developmental process and
arithmetic-performing subtrees that determine the
numerical value of components. Each circuit-
constructing program tree in the population contains
component-creating functions and connection-modifying
functions. Each connection-modifying function in a
program tree points to an associated highlighted
component and modifies the topology of the developing
circuit. Connection-modifying functions have one or
more construction-continuing subtrees, but no
arithmetic-performing subtrees. Component-creating
functions have one construction-continuing subtree and
typically have one arithmetic-performing subtree. This
constrained syntactic structure is preserved by using
structure-preserving crossover with point typing (Koza
1994a).

Component-creating functions insert a component
into the developing circuit and assign component
value(s) to the component. Each component-creating
function has a writing head that points to an associated
highlighted component in the developing circuit and
modifies the highlighted component in a specified way.
The construction-continuing subtree of each component-
creating function points to a successor function or
terminal in the circuit-constructing program tree.

The arithmetic-performing subtree of a component-
creating function consists of a composition of
arithmetic functions and random constants that specify,
after interpretation, the numerical value of a component.

Space does not permit a detailed description of each
function herein.

Various electrical circuits have been designed using
genetic programming, including lowpass filters (Koza,
Bennett, Andre, and Keane 1996a, 1996b), crossover
(woofer and tweeter) filters (Koza, Bennett, Andre, and
Keane 1996c), asymmetric bandpass filters (Koza,
Bennett, Andre, and Keane 1996d), and a 60 dB
operational amplifier (Bennett, Koza, Andre, and Keane
1996), and the use of automatically defined functions
and architecture-altering operations for creating useful
electrical subcircuits (Koza, Andre, Bennett, and Keane
1996).

3 . Preparatory Steps
Before applying genetic programming to a problem of
circuit synthesis, the user must perform seven major
preparatory steps, namely (1) identifying the embryonic
circuit that is suitable for the problem, (2) determining
the architecture of the overall circuit-constructing
program trees, (3) identifying the terminals of the to-be-
evolved programs, (4) identifying the primitive
functions contained in the to-be-evolved programs, (5)
creating the fitness measure, (6) choosing certain
control parameters, and (7) determining the termination
criterion and method of result designation.

 The one-input, one-output embryo of figure 1 (with
one modifiable wire Z0) is suitable for the synthesis of
computational circuits.

Since the embryonic circuit has one modifiable wire,
there is one result-producing branch in each circuit-
constructing program tree.

The function set, Fccs, for the construction-
continuing subtrees is

Fccs = {R, SERIES, PSS, PSL, FLIP, NOP,
NEW_T_GND_0, NEW_T_GND_1, NEW_T_POS_0,
NEW_T_POS_1, NEW_T_NEG_0, NEW_T_NEG_1,
PAIR_CONNECT_0, PAIR_CONNECT_1, Q_D_NPN,
Q_D_PNP, Q_3_NPN0, ..., Q_3_NPN11, Q_3_PNP0, . . . ,
Q_3_PNP11, Q_POS_COLL_NPN, Q_GND_EMIT_NPN,
Q_NEG_EMIT_NPN, Q_GND_EMIT_PNP, Q_POS_EMIT_PNP,
Q_NEG_COLL_PNP}

The terminal set, Tccs, for the construction-continuing
subtree is

Tccs = {END, SAFE_CUT}.
The function set, Faps, for each arithmetic-performing

subtree is
Faps = {+, -}.
The terminal set, Taps, for each arithmetic-performing

subtree is
Taps = {ℜ }.

ℜ represents random constants from –1.0 to +1.0.
SPICE's default npn and pnp transistor model

parameters were used.
The evaluation of fitness for each individual circuit-

constructing program tree in the population begins with
its execution. This execution applies the functions in
the program tree to the very simple embryonic circuit,
thereby developing the embryonic circuit into a fully
developed circuit. A netlist describing the circuit is
then created. The netlist identifies each component of
the circuit, the nodes to which that component is
connected, and the value of that component. The circuit
is then simulated to determine its behavior. The
217,000-line SPICE simulator was modified to run as a
submodule within the genetic programming system.
SPICE is a large family of programs written over
several decades at the University of California at
Berkeley for the simulation of analog, digital, and
mixed analog/digital electrical circuits (Quarles et al.
1994). The input to a SPICE simulation consists of a
netlist describing the circuit to be analyzed and certain
commands that instruct SPICE as to the type of
analysis to be performed and output to be produced.

The fitness measure is customized to each particular
desired computational circuit. For example, for the cube
root circuit, the target voltage is the cube root of the
input voltage. The SPICE simulator is requested to
perform a DC sweep analysis at 21 equidistant voltages
between –250 mV and +250 mV for the cube root,
square, and cube functions (and 0 mV to +500 mV for
the square root function). Fitness is the sum, over
these 21 fitness cases, of the absolute weighted
deviation between the actual value of the voltage that is
produced by the circuit at the probe point VOUT at

node 5 and the target value for voltage. The smaller the
value of fitness, the better.

The fitness measure does not penalize output
voltages that perfectly match the target voltages; it
slightly penalizes every acceptable deviation from the
target voltage; and it heavily penalizes every
unacceptable deviation. If the output voltage is within
1% of the target voltage value for a particular fitness
case, the absolute value of the deviation is weighted by
1 for that fitness case. If the output voltage is not
within 1% of the target voltage value, the deviation is
weighted by 10 for that fitness case. This arrangement
reflects the fact that a deviation of 1% from the ideal
voltage is acceptable, but greater deviations are not.

The population size, M , was 640,000. The
percentage of genetic operations on each generation was
89% one-offspring crossovers, 10% reproductions, and
1% mutations. The architecture-altering operations
were not used on this problem. Since only one result-
producing branch was used in the embryo for this
problem, the maximum size, Hrpb, for the result-
producing branch was 600 points. The other parameters
for controlling the runs of genetic programming were
the default values specified in Koza 1994a (appendix D).

This problem was run on a medium-grained parallel
Parsytec computer system consisting of 64 80 MHz
Power PC 601 processors arranged in a toroidal mesh
with a host PC Pentium type computer. The
distributed genetic algorithm was used. On each
generation, four boatloads of emigrants, each consisting
of B = 2% (the migration rate) of each node's
subpopulation (selected on the basis of fitness) were
dispatched to each of the four toroidally adjacent
processing nodes. See Andre and Koza 1996 for details.

4 . Results
4 . 1 . Cube Root Circuit
The goal here is to evolve an analog electrical circuit
whose output is the cube root of its input.

The worst individual program trees from generation
0 create circuits that are so pathological that SPICE is
incapable of simulating them.

The best circuit from generation 0 (figure 5)
achieves a fitness of 77.7 and has two transistors, no
diodes, and one resistor (in addition to the source and
load resistors in the embryo). Figure 2 compares the
output produced by the best circuit from generation 0
with the target (i.e., the cube root of the input voltage).
As can be seen, the output resembles the target only in
that it has a positive slope.

Fitness improves as the evolutionary process
proceeds from generation to generation. The best circuit
from generation 17 (figure 6) achieves a fitness of 26.7
and has 13 transistors, three diodes, no capacitors, and
two resistors (in addition to the source and load resistors
in the embryo). Figure 3 compares the output produced

by the best circuit from generation 17 with the target
(i.e., the cube root of the input voltage).

The best circuit from generation 60 (figure 7)
achieves a fitness of 1.68 and has 36 transistors, two
diodes, no capacitors, and 12 resistors. Figure 4 shows
that the output of this circuit is virtually the same as
the target (i.e., the cube root of the input).

4 . 2 . Square Root, Squaring, and
Cubing Circuits

The design of several other computational circuits have
been evolved using genetic programming. The best-of-
run circuit (figure 8) for the problem of designing a
square root circuit has 39 transistors, seven diodes, and
18 resistors. The best-of-run circuit (figure 9) for the
problem of designing a squaring circuit has 33
transistors, five diodes, and one resistor. The best-of-run
circuit (figure 10) for the problem of designing a cubing
circuit has 30 transistors, five diodes, and 21 resistors.

5 . Conclusion
We evolved circuits that perform the cube root, square
root, square, and cube functions.

Figure 2 Comparison for generation 0.

Figure 3 Comparison for generation 17.

Figure 4 Comparison for generation 60.

Figure 5 Best circuit from generation 0.

Figure 6 Best circuit from generation 17.

Figure 7 Best circuit from generation 60.

6 . Acknowledgments
Dr. Joseph Babanezhad provided helpful information to
Frank Dunlap concerning this paper. Simon Handley
made helpful comments on this paper.

References
Andre, David and Koza, John R. 1996. Parallel genetic

programming: A scalable implementation using the
transputer architecture. In Angeline, P. J. and
Kinnear, K. E. Jr. (editors). 1996. Advances in
Genetic Programming 2. Cambridge: MIT Press.

Angeline, Peter J. and Kinnear, Kenneth E. Jr.
(editors). 1996. Advances in Genetic Programming
2. Cambridge, MA: The MIT Press.

Babanezhad, J. N. and Temes, G. C. 1986. Analog
MOS Computational Circuits. Proceedings of the
IEEE Circuits and System International Symposium.
Pages 1156–1160.

Bennett III, Forrest H, Koza, John R., Andre, David,
and Keane, Martin A. 1996. Evolution of a 60
Decibel op amp using genetic programming. In
Proceedings of International Conference on Evolvable
Systems: From Biology to Hardware. Lecture Notes
in Computer Science. Berlin: Springer-Verlag.

Gilbert, Barrie. 1968. A precise four-quadrant
multiplier with subnanosecond response. IEEE
Journal of Solid-State Circuits. Volume SC-3.
Number 4. December 1968. Pages 365–373.

Gruau, Frederic. 1996. Artificial cellular development
in optimization and compilation. In Sanchez,
Eduardo and Tomassini, Marco (editors). 1996.
Towards Evolvable Hardware. Lecture Notes in
Computer Science, Volume 1062. Berlin: Springer-
Verlag. Pages 48–75.

Higuchi, Tetsuya, Niwa, Tatsuya, Tanaka, Toshio, Iba,
Hitoshi, de Garis, Hugo, and Furuya, Tatsumi.
1993. In Meyer, Jean-Arcady, Roitblat, Herbert L.
and Wilson, Stewart W. (editors). From Animals to
Animats 2: Proceedings of the Second International
Conference on Simulation of Adaptive Behavior.
Cambridge, MA: The MIT Press. 1993. Pages 417–
424.

Holland, John H. 1975. Adaptation in Natural and
Artificial Systems. Ann Arbor, MI: University of
Michigan Press.

Kinnear, Kenneth E. Jr. (editor). 1994. Advances in
Genetic Programming. Cambridge, MA: The MIT
Press.

Koza, John R. 1992. Genetic Programming: On the
Programming of Computers by Means of Natural
Selection. Cambridge, MA: MIT Press.

Koza, John R. 1994a. Genetic Programming II:
Automatic Discovery of Reusable Programs.
Cambridge, MA: MIT Press.

Koza, John R. 1994b. Genetic Programming II
Videotape: The Next Generation. Cambridge, MA:
MIT Press.

Koza, John R. 1995. Gene duplication to enable
genetic programming to concurrently evolve both the
architecture and work-performing steps of a computer
program. Proceedings of the 14th International Joint
Conference on Artificial Intelligence. San Francisco,
CA: Morgan Kaufmann. Pages 734–740.

Koza, John R., Andre, David, Bennett III, Forrest H,
and Keane, Martin A. 1996. Use of automatically
defined functions and architecture-altering operations
in automated circuit synthesis using genetic
programming. In Koza, John R., Goldberg, David
E., Fogel, David B., and Riolo, Rick L. (editors).
Genetic Programming 1996: Proceedings of the First
Annual Conference, July 28-31, 1996, Stanford
University. Cambridge, MA: The MIT Press.

Koza, John R., Bennett III, Forrest H, Andre, David,
and Keane, Martin A. 1996a. Toward evolution of
electronic animals using genetic programming.
Artificial Life V: Proceedings of the Fifth
International Workshop on the Synthesis and
Simulation of Living Systems. Cambridge, MA:
The MIT Press.

Koza, John R., Bennett III, Forrest H, Andre, David,
and Keane, Martin A. 1996b. Automated design of
both the topology and sizing of analog electrical
circuits using genetic programming. In Gero, John
S. and Sudweeks, Fay (editors). Artificial
Intelligence in Design '96. Dordrecht: Kluwer.
Pages 151-170.

Koza, John R., Bennett III, Forrest H, Andre, David,
and Keane, Martin A. 1996c. Four problems for
which a computer program evolved by genetic
programming is competitive with human
performance. Proceedings of the 1996 IEEE
International Conference on Evolutionary
Computation. IEEE Press. Pages 1–10.

Koza, John R., Bennett III, Forrest H, Andre, David,
and Keane, Martin A. 1996d. Automated
WYWIWYG design of both the topology and
component values of analog electrical circuits using
genetic programming. In Koza, John R., Goldberg,
David E., Fogel, David B., and Riolo, Rick L.
(editors). Genetic Programming 1996: Proceedings
of the First Annual Conference, July 28-31, 1996,
Stanford University. Cambridge, MA: MIT Press.

Koza, John R., Bennett III, Forrest H, Andre, David,
and Keane, Martin A. 1996e. Reuse, parameterized
reuse, and hierarchical reuse of substructures in
evolving electrical circuits using genetic
programming. In Proceedings of International
Conference on Evolvable Systems: From Biology to
Hardware. Lecture Notes in Computer Science.
Berlin: Springer-Verlag.

Koza, John R., Goldberg, David E., Fogel, David B.,
and Riolo, Rick L. (editors). 1996. Genetic
Programming 1996: Proceedings of the First Annual
Conference, July 28-31, 1996, Stanford University.
Cambridge, MA: The MIT Press.

Koza, John R., and Rice, J. P. 1992. Genetic
Programming: The Movie. Cambridge, MA: MIT
Press.

Kruiskamp, Marinum Wilhelmus and Leenaerts,
Domine. 1995. DARWIN: CMOS opamp synthesis
by means of a genetic algorithm. Proceedings of the
32nd Design Automation Conference. New York:
Association for Computing Machinery. 433–438.

Quarles, Thomas, Newton, A. R., Pederson, D. O.,
and Sangiovanni-Vincentelli, A. 1994. SPICE 3
Version 3F5 User's Manual. Department of
Electrical Engineering and Computer Science,
University of California, Berkeley, CA. March 1994.

Rutenbar, R. A. 1993. Analog design automation:
Where are we? Where are we going? Proceedings of
the l5th IEEE CICC. New York: IEEE. 13.1.1-
13.1.8.

Sanchez, Eduardo and Tomassini, Marco (editors).
1996. Towards Evolvable Hardware. Lecture Notes
in Computer Science, Volume 1062. Berlin:
Springer-Verlag.

Sheingold, Daniel H. (editor). 1976. Nonlinear
Circuits Handbook. Norwood, MA: Analog Devices.

Thompson, Adrian. 1996. Silicon evolution. In
Koza, John R., Goldberg, David E., Fogel, David B.,
and Riolo, Rick L. (editors). 1996. Genetic
Programming 1996: Proceedings of the First Annual
Conference, July 28-31, 1996, Stanford University.
Cambridge, MA: MIT Press.

Figure 8 Evolved square root circuit.

Figure 9 Evolved squaring circuit.

Figure 10 Evolved cubing circuit.

7

Version 2 – Camera-Ready Version – Submitted January 24,
1997 to IEEE International Conference on Evolutionary
Computation (ICEC-97) to be held in Indianapolis on April 13
– 16 (Sunday – Thursday), 1997.

Automated Synthesis of Computational Circuits Using
Genetic Programming

John R. Koza
Computer Science Dept.

258 Gates Building
Stanford University

Stanford, California 94305-9020
koza@cs.stanford.edu

http://www-cs-
faculty.stanford.edu/~koza/

Forrest H Bennett III
Visiting Scholar

Computer Science Dept.
Stanford University

Stanford, California 94305
fhb3@slip.net

Jason Lohn
Visiting Scholar

Computer Science Dept.
Stanford University

Stanford, California 94305
jlohn7@leland.stanford.edu

Frank Dunlap
Dunlap Consulting

Palo Alto, California

Martin A. Keane
Martin Keane Inc.
5733 West Grover

Chicago, Illinois 60630
makeane@ix.netcom.com

David Andre
Computer Science Dept.
University of California

Berkeley, California
dandre@cs.berkeley.edu

